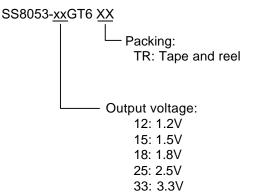


1.5A Ultra Low Dropout Regulator

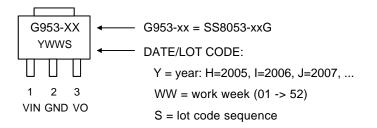
FEATURES

Fixed output voltages of 1.2/1.5/1.8/2.5/3.3V Output current up to 1.5A Over-current and over-temperature protection Low dropout voltage 500mV @ 1.5A Low ground current SOT-223 package

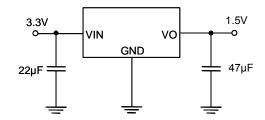
APPLICATIONS


Battery powered systems Motherboards Peripheral cards Network cards Set Top Boxes Notebook Computers DESCRIPTION

The SS8053G is a high performance positive voltage regulator designed for use in applications requiring very low dropout voltage at up to 1.5 Amps. The SS8053G features 500mV dropout voltages and very low ground current. Although designed for high current loads, these devices are also useful in lower current, extremely low dropout-critical systems, where their minimal dropout voltage and ground current values are important characteristics.


The SS8053G provides excellent regulation over variations in line, load and temperature.

Pb-free; RoHS compliant.


ORDERING INFORMATION

PIN CONFIGURATION AND MARKING

TYPICAL APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Voltage.....7V

Power Dissipation Internally Limited	(Note 2)
Maximum Junction Temperature	150°C
Storage Temperature Range65°C ≤TJ	≤ +150°C
Reflow Temperature (soldering, 10sec)	260°C
Thermal Resistance Junction to Ambient	141°C/W
Thermal Resistance Junction to Case	20.1°C/W
ESD Rating (Human Body Model)	2kV

OPERATING CONDITIONS (Note 1)

Input Voltage	2.2V ~5.5V
Temperature Range	40°C ≤T _A ≤ +85°C

ELECTRICAL CHARACTERISTICS

V_{IN} =5V, I_0 = 0.5A, C_{IN} = 4.7 μ F, C_{OUT} =10 μ F, T_A = T_J = 25°C unless otherwise specified (Note 3)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage	V _{IN}		2.2		5.5	V
Output Voltage	Vo	V _{IN} =V _O +0.7V, I _O =10mA	-2	Vo	2	%
Line Regulation		$V_0+0.7V \le V_{IN} \le 5.5V$, $I_0=10mA$		0.2	2	%
Load Regulation		$10\text{mA} \leq I_0 \leq 1.5\text{A}$		0.8	2	%
Quiescent Current	Ι _Q	V _{IN} =3.3V		1.7	2.5	mA
Ripple Rejection		fi=120Hz, 1V _{P-P} , I _O =100mA		55		dB
Dropout Voltage	V _D	I ₀ =1.5A		0.5	0.65	V
Short Circuit Current				0.8		Α

- **Note 1:** Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Conditions are conditions under which the device functions but the specifications might not be guaranteed. For guaranteed specifications and test conditions see the Electrical Characteristics.
- **Note2:** The maximum power dissipation is a function of the maximum junction temperature, T_{Jmax} ; total thermal resistance, Θ_{JA} , and ambient temperature T_A . The maximum allowable power dissipation at any ambient temperature is $(T_{jmax}-T_A) / \Theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the chip will go into thermal shutdown.

Note3: Low duty pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.

Note4: The type of output capacitor should be tantalum or aluminum.

Definitions

Dropout Voltage

The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 2% below its nominal value, dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

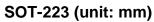
Line Regulation

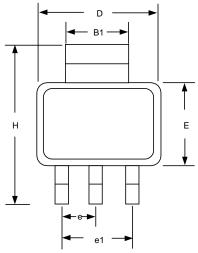
The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

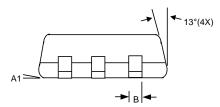
Load Regulation

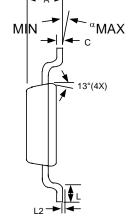
The change in output voltage for a change in load current at constant chip temperature. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

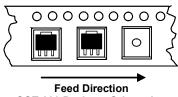
Maximum Power Dissipation


The maximum total device dissipation for which the regulator will still operate within specifications.


Quiescent Bias Current


Current which is used to operate the regulator chip and is not delivered to the load.


PHYSICAL DIMENSIONS



SYMBOL

Taping Specification

SOT-223 Package Orientation

SYMBOL	MILLIMETER		INCH		
	MIN	MAX	MIN	MAX	
А	1.55	1.80	0.061	0.071	
A1	0.02	0.12	0.0008	0.0047	
В	0.60	0.80	0.024	0.031	
B1	2.90	3.10	0.114	0.122	
С	0.24	0.32	0.009	0.013	
D	6.30	6.70	0.248	0.264	
E	3.30	3.70	0.130	0.146	
е	2.30 BSC		0.090 BSC		
e1	4.60 BSC		0.181 BSC		
Н	6.70	7.30	0.264	0.287	
L	0.90 MIN		0.036 MIN		
L2	0.06 BSC		0.0024 BSC		
α	0°	10º	0°	10º	

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, expressed or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.